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The phase transitions classes of reaction-diffusion systems with multiparticle reactions are an open chal-
lenging problem. Large scale simulations are applied for the 3A —4A, 3A —2A and the 3A—4A, 3A—©
triplet reaction models with site occupation restriction in one dimension. Static and dynamic mean-field scaling
are observed with signs of logarithmic corrections suggesting d.=1 upper critical dimension for this family of

models.
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I. INTRODUCTION

The exploration of the universal behavior of nonequilib-
rium phase transitions is still an open problem of statistical
physics [1-3]. In equilibrium critical phenomena symme-
tries, dimensions and boundary condition are the relevant
factors determining a universality class. During the study of
nonequilibrium models other circumstances like initial con-
ditions or topological effects in low dimensions have been
proven to be decisive [4]. Unfortunately a solid field theoret-
ical background exists for only a few reaction-diffusion (RD)
systems exhibiting continuous phase transition to absorbing
states [5]. These are mainly branching and annihilating ran-
dom walk models A — (n+1)A, 2A — @ built up from unary
particle creation [6—8] RD models are interesting since many
other types of systems like surface growth, spin systems or
stochastic cellular automata can be mapped on them [3].

Recently RD systems with multiparticle creation have be-
come the focus of research. Numerical studies resulted in
debated critical phenomena and generated a long series of
publications. An interesting example was being investigated
during the past decade that emerges at the phase transitions
of binary production systems (PCPD) [9]. In these systems
particle production competes with pair annihilation and
single particle diffusion. If the production wins steady states
with finite particle density appearing in (site restricted) mod-
els with hard-core repulsion, while in unrestricted (bosonic)
models the density diverges. If the annihilation is stronger an
absorbing phase emerges, which is either completely empty
or contains a solitary diffusing particle. In between the two
phases a continuous phase transition can be observed in site
restricted models.

In triplet reaction models at least three particles are
needed to contact for a reaction. They have been investigated
by simulations [10-12] and a numerical Langevin equation
solution [15]. The first simulation results [10,11] for
3A—4A, 3A —2A models in one dimension claimed a dis-
tinct universal behavior from the known ones. Simple power-
counting analysis of an effective Langevin equation corre-
sponding to the coarse grained microscopic model results in
d.=4/3 [12]. However, the numerical estimates for the criti-
cal exponent describing the density decay from homoge-
neous random initial state p(¢) o~ differed significantly
a=0.32(1) [10] vs @=0.27(1) [11]. In the former case a site
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restricted model was investigated and scaling was reported in
the 10*<r<10° region. In Ref. [11] different suppressed
bosonic triplet models—where the multiple site occupancy is
suppressed by an exponential probability factor—exhibited
scaling for 10*<¢< 107 Monte Carlo steps (MCS) (through-
out the paper the time is measured by MCS). Renormaliza-
tion group analysis pointed out [16] that a single field theory
does not exhibit a nontrivial stable fixed point and suggested
d.=1 for such models. This study raised the possibility that a
proper field theory should be a coupled one, with positively
correlated clustered particles and solitary random walkers.
Another simulation study [12] on site restricted models
reported scaling agreeing with mean-field exponents
a=0.33(1) and B=1.07(10), where B is the order parameter
exponent in the active phase p|p—p,|~.

Very recently a coupled field theoretical description of
such systems is suggested [15]. An effective Langevin equa-
tion between a directed percolation (DP) like and an annihi-
lating random walk (ARW) system is analyzed by the nu-
merical integration technique. Note, however, the ARW like
system is described by a positive noise term saying that at
the critical point the anticorrelations do not play a role and
serve merely as a fluctuating source to the primary field. As
a consequence, this field theory leads to the same critical
scaling behavior as that of the PCPD albeit with a different
upper critical dimension d,=4/3 (versus d,=2 for PCPD).
So according to this study in one dimension one should see
PCPD class exponents: a=0.20(1) and 8=0.40(1) [11,17].

In the present study I extend the simulation time of the
3A—4A, 3A —2A model investigated in Ref. [12] by two
orders of magnitude and follow the static and dynamic scal-
ing behavior of particles and triplets (AAA) at different dif-
fusion probabilities. In Sec. (3) T apply the same kind of
analysis for the 34 —4A, 3A — @ model.

II. SIMULATIONS OF THE 34 —4A, 3A —2A MODEL

The simulations were carried out on 2 X L=10° sized sys-
tems with periodic boundary conditions. The initial states
were randomly half filled lattices, and the density of par-
ticles, singlets, and triplets is followed up to 2 X 10° MCS by
random sequential dynamics. An elementary MCS consists
of the following steps. A particle A is chosen randomly and
the following processes are done:
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FIG. 1. (Color online) Density decay of the 3A —4A, 3A—2A
model at D=0.1. Different curves correspond to p=0.301, 0.302,
0.3027, 0.3031, 0.3032, 0.3033, 0.303 35, 0.3034, and 0.3035
(from top to bottom). The inset shows the decay of triplets: ps¢!/3,
for p=0.303 37

(a) AD <« @A with probability D,

(b) 3A —2A with probability p(1-D),

(¢) 3A—4A with probability (1-p)(1-D),
such that the reactions were allowed on the left or right side
of the selected particle strings randomly. The time—
measured by MCS—is updated by 1/np, where np is the total
particle number at time ¢. In order to get precise p(f), the
critical point and exponent estimates the number of indepen-
dent realizations varied between 20 and 350 per p and D
throughout this study.

First, I extended the simulations at D=0.1 published in
Ref. [12] from t,,,=107 MCS by a factor of 200 in time.
Figure 1 shows the density decay multiplied by #"/*. Follow-
ing a long initial transient, where the decay is slow an excel-
lent agreement with the mean-field scaling can be observed
for 10°<¢<10° MCS for p.=0.303 37(2). The triplet den-
sity decays in the same way (p;>t'"?) as the total density
suggesting d.=1.

I repeated the simulations for a higher diffusion rate D
=0.8 (Fig. 2). In this case due to the dynamics of this model
the reaction rates are smaller and one can observe a faster
than mean-field decay for 10*<¢<5X 10 MCS. Agreement
with mean-field scaling sets in for 5 X 108 <¢<2 X 10° MCS
steps for p=0.4075(1). Fast transient decay for intermediate
times has already been explained in case of the AA— A co-
agulation model with finite reaction rates [13,14]. One may
expect similar behavior for the triplet annihilation case
where the low reaction rates at D=0.8 can explain the fast
transient seen here. Again, the triplet density decays by the
mean-field law for r>5 X 108 MCS as expected at the upper
critical dimension d.=1. Using the critical point estimates
obtained by the dynamical simulations I investigated the sin-
gular behavior of the order parameter in the supercritical
region as well. The order parameter is expected to scale as
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FIG. 2. (Color online) Density decay of the 34 —4A, 34 —2A
model at D=0.8. Different curves correspond to p=0.406, 0.407,
0.4074, 0.4075, 0.408, and 0.409 (from top to bottom). The inset
shows the triplet density decay at p=0.4075.

p|p—pP. (1)

To get the steady state densities I followed the decay in sev-
eral samples until saturation occurs and averaged it in a long
time window exceeding a level-off seen on log-lin scale. The
data are analyzed by the local slopes method. According to
this

In p(,p;) = In p(,p;_;)
In(p;) = In(p;_;)

Berdp)) = , (2)

and as p;— p. the effective exponent tends to the true critical
value B,;— B. As Fig. 3 shows the B, converges to the
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FIG. 3. (Color online) Effective static order parameter exponent
results in the active phase. Bullets correspond to D=0.8, boxes to
D=0.1 of the 34 —4A, 3A — 2A model. Stars denote the results of
the 34 —4A, 3A — @ model.
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mean-field value B=1 for both diffusion rates I investigated.
For D=0.8 on can see an overshooting, while for D=0.1
local slopes approach the asymptotic value from below fol-
lowing an upward curvature. This kind of effective exponent
behavior usually corresponds to logarithmic correction to
scaling. In the case of the general form

p() = €’ In*(e), 3)

where e=|p—p,|, the effective exponent behaves as
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Applying this form to the data of Fig. 3 one obtains:
B=1.05(5), x=1.2(1) for D=0.1 and B=0.93(10),
x=-1.1(1) for D=0.8. Although the assumed scaling correc-
tion form may look somewhat ad hoc it indicates d.=1.

I also considered the scenario suggested by Ref. [15] ac-
cording to which PCPD scaling {@=0.19(1) [17,15]} should
be observed at the transition point. By assuming that such
density decay appears for very long times (> 10° MCS) one
can read-off the corresponding slightly different critical point
estimates: p,=0.303 25(5) for d=0.1 and p,=0.4071(1) for
D=0.8. Using these values in the local slopes analysis one
can obtain: 8=0.85(5) for D=0.1 and 8=0.80(5), neither of
them is near to the exponent 8=0.40(1) of the PCPD class
[17]. Therefore these simulations can not support the PCPD
class scenario.

ITII. SIMULATIONS OF THE 34 —44, 34 —@ MODEL

Considering the mean-field type of scaling behavior of the
3A—4A, 3A—2A model one may speculate that in this
model the spatial fluctuations are somewhat suppressed: it is
hard to create nearly arbitrarily large regions void of
particles from a place where “annihilation” reactions have
taken place due to the 3A —2A rule. In the low-diffusion
regime, when a particle was created from the configuration
---0AAAQ- - - it is most likely that this offspring would recom-
bine with the remaining 2A particles and undergo another
local sequence of reactions. And if in the meantime the 3A in
a row have either branched or undergone a 3A — 2A reaction,
the remaining particles would not have the time to go very
far. Since everything takes place essentially locally, the
mean-field rate equation should be valid [ 18] yielding there-
fore a=1/3.

To check this scenario I run simulations for the 34 —4A,
3A — @ model, in which no such local sequence of reactions
occur, since following the triplet annihilation the remaining
single A can diffuse away at most.

The dynamical rules are very similar to those of the
3A—4A, 3A— @ model. An elementary MCS consists of
the following processes:

(a) AD < @A with probability D,
(b) 3A— @ with probability p(1-D),
(c) 3A—4A with probability (1-p)(1-D),
such that the reactions were allowed on the left or right side
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FIG. 4. (Color online) Density decay in the 3A —4A, 3A — @
model at D=0.8. Different curves correspond to p=0.1185, 0.1187,
0.118 75, 0.1188, 0.118 86, 0.1189, and 0.119 (from top to bottom).
The inset shows the decay of triplets for p=0.11886.

of the selected particle strings. Now the system size was
4 X L=10° with periodic boundary conditions and the density
of particles, singlets and triplets are followed up to 2 X 10°
MCS from the random initial state. As Fig. 4 shows the
time evolution of p(f) can be split into three parts (a) an
initial slow regime (r<<3 X 10°® MCS), (b) an intermadiate
faster then mean-field regime (3 X 10°<t<3Xx10° MCS),
and (c) a mean-field regime for #>3X10° MCS. One
can see a level-off in the time evolution of pr'® for
p=p.=0.118 87(2). For this critical p value the density of
triplets behaves in the same way in the long time limit
(1> =3 X 10° MCS) corroboting the d.=1 result of the pre-
vious section.

Finally, the static exponent B was determined in the
active phase in the neighborhood of the critical point
(p.=0.118 87). As Fig. 3 shows the local slopes (2) converge
to the mean-field value again. By fitting with the form (4)
one gets the following estimates: 8=0.99(5), x=0.6(1).

IV. CONCLUSIONS

Large scale simulations for two different triplet models:
3A—4A, 3A—2A and 3A—4A, 3A— O result in mean-
field type of static and dynamic scaling behavior in one di-
mension. The simulations up to r=2 X 10° MCS do not sup-
port the scenario according to fluctuations are supressed and
which reactions take place locally hindering the PCPD type
of critical behavior. Since the triplet density decays in the
same way as the total density, which is typical at the upper
critical dimension the d.=1 is concluded.
Furthermore, the logarithmic correction to scaling is shown
in the case of the static order parameter exponent. On the
other hand, one can not see log corrections in the density
decay, which may mean that these corrections are small or
perhaps a next to the leading order correction term hinders it.
Such a correction term was found in a very recent field the-
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oretical analysis of the 34 — (@ ,A,2A) models [19], which
correspond to the dominant behavior in the inactive phase of
the triplet model I studied.

The contradiction with the results of the Langevin equa-
tion analysis of a bosonic triplet system is unresolved. This
may also mean that the two-species coupled model and the
one-species model behave differently.
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